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SUMMARY 

The main steps of modeling bacterial growth responses are summarized and a new model for growth curves is shown. Its advantages are analyzed from 
some theoretical and practical points of view. The new model fits better and has more advantageous statistical properties than the Gompertz curve. 

INTRODUCTION 

A first approach to modeling bacterial growth uses 
empirical techniques. Those models can be analyzed from 
certain statistical, numerical and computational points of 
view, such as goodness of fit, standard errors of the estimated 
parameters, linearity of the estimator, and so on. Variance 
analysis can help to identify the main environmental factors 
(viz. temperature, pH, water activity) controlling bacterial 
growth. 

In a batch culture under constant environmental con- 
ditions, the bacterial growth can generally be characterized 
by a sigmoid curve where the dependent variable is the 
logarithm of the viable cell concentration. At  a given time 
the slope of that curve gives the instantaneous specific 
growth rate, which can be considered as the ceils' per capita 
rate of division [6]. One of the most important characteristics 
of an organism in a given environment is the maximum 
specific growth rate at the inflexion point of the sigmoid 
curve. Another  important parameter is the length of the lag 
period, which is usually defined as the intercept of the 
tangent, drawn to the inflexion, with the lower asymptote 
of the sigmoid curve [11]. 

Alternative approaches to measuring the amount of 
microbial growth use biomass, turbidity, conductance, etc. 
(or their logarithm) as the time-dependent variable. It is 
worth noting that the slope of a growth curve of this kind 
is generally not equivalent to the above defined (specific) 
growth rate. To compare this approach with the viable count 
models, it is necessary to find the quantitative connection 
between the measured quantity and the viable cell concen- 
tration. 

Fitting growth curves by the Gompertz function is widely 
used and discussed in the literature [1,4,5,7,8,14] and has 
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proved to be very useful, as a first approach, on a range of 
organisms and controlling factors. However, it suffers a 
number of disadvantages. Because the Gompertz function 
is fitted to the logarithm of the cell concentration, and not 
to the original number, this is strictly an empirical model 
and it has no connection with the well-defined Gompertz 
growth of the cells [9]. As a consequence, the Gompertz 
curve cannot produce an essentially straight line in the 
exponential phase. Instead, it has a definite curvature around 
the inflexion and, therefore, it suggests a maximum specific 
growth rate that is higher than might be expected. 

Another disadvantage originates from the rather geometri- 
cal definition of the lag phase. Because the slope of the 
Gompertz function cannot be zero, the lower asymptote of 
the sigmoid curve must be below the inoculum level, so for 
some datasets the estimate of the duration of the lag can 
give a negative number. 

The second stage of developing a model is to fit a 
response surface to one or more parameters of the sigmoid 
growth curves applied in the first stage. For example, the 
environment-dependence of the main parameters of the 
fitted growth curves (maximum specific growth rate, lag 
time) can be modeled by multivariate quadratic functions. 
This makes it possible to predict the growth responses 
of an organism growing under specified environmental 
conditions inside the experimental region, including con- 
ditions where no experimental data exist. 

A new growth function 
Here we show a new growth model which aims, first of 

all, to give a simple, but more mechanistic, definition for 
the duration of the lag period. The mathematical properties 
of the model have been published elsewhere [2]. 

Theory 
Our starting point is the assumption that a constant 

physical environment, E, unambiguously defines a time- 
dependent growth curve, x(t), described by the first order 
autonomous differential equation 



2 = Ix(x)x (la) 

with the initial value 

X(0) = X 0 (0 < X 0 < Xmax) ( l b )  

where x denotes the cell concentration, assumed to be 
homogenously distributed in the living space, and tx(x) is 
the so-called specific growth rate where: 

]-s [0,Xrnax ] ---> g 
p~(x) is continuously differentiable on (O,xma• 
d/~/dx is strictly negative on (O,Xmax) 
/~(X0) > 0 and /~(Xmax) = 0 

[13]. As is well-known, under these conditions the above 
differential equation has a unique solution, and that solution 
is monotone increasing and converging to Xmax as t ~ oo. 

Turner et al. [12] published a formula for /x(x), called 
'generic equation', which is general enough to include most 
of the well-known sigmoid functions (logistic, Gompertz, 
Richards, Bertalanffy, etc.). 

A typical experiment, regularly carried out in food 
microbiology laboratories, would be first to grow the bacteria 
under favorable environmental conditions, El (in the primary 
culture), to get an appropriate amount for the inoculation. 
It is then inoculated and held in a different, but constant, 
physical environment, E2, in a batch culture. Before the 
inoculation, the cells grow exponentially in El, then, after 
a certain lag period, they again grow exponentially in E2, 
although often at a different specific growth rate, until they 
reach the stationary phase. 

Let us fix the moment of inoculation as zero time. 
Suppose that before the zero time the environment, El, was 
significantly different from the actual environment, E2. 

We postulate that after inoculation the cell concentration 
of the culture is described by the following, so-called initial 
value problem (differential equation with initial values): 

2 = ce(t)l~(x)x (0 <~ t < oo; 0 < x )  (2a)  

x (0 )  = x 0 (0 • x 0 < Xmax) , (2b) 

where (a)tx(x) is determined by E 2 and it satisfies the 
conditions assumed under Eqns la and lb and (b)a( t)  
depends on E1 and E2 and for 0 -<- t < oo: 

0-< ce(t)-< 1; 
a(t) is monotone increasing; and 
,~(t)  - - ,  1 (t ~ co). 

We call tz(x) the potential specific growth rate and a(t)tx(x) 
the actual specific growth rate. Furthermore a(t) is called 
the adjustment function o f  E2 referring to El. 

The solution of the autonomous counterpart of Eqns 2a, 
2b (i.e. that of Eqns la, lb) is independent of El. We call 
it the potential growth curve. Generally the solution of the 
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above initial value problem depends on E1 as well as on E2. 
We call it the actual growth curve. 

It can be shown mathematically (see [2]) that if f( t)  
denotes the solution of the initial value problem (Eqns la, 
lb) and a(t) is an adjustment function, then the g~(t) solution 
of the initial value problem (Eqns 2a, 2b) is 

g~(O = U(A(0) 

where 

A(t)  : f f  a(r)dr 

For practical purposes, a class of adjustment functions of 
the form 

t n 
( ~  

a,  ttj A n + t ~ 

where A and n are (positive) model parameters, was shown 
to be very effective [3]. This adjustment function can be 
derived in the following way. 

Suppose that there exists a critical substrate or product, 
say P, which is responsible for the bottleneck of growth. 
Suppose that the dependence of growth on this product 
follows the well-known Michaelis-Menten rule: 

P(t) 
k - K .  + P(t) ~(x)x 

where Kp is the Michaelis-Menten constant. 
If P(t) is monotone increasing then 

P(0 
r - x p +  P( t )  

can play -the role of the adjustment function. 
Suppose that P(t) is built up from a negligibly small 

quantity and around Kp its accumulation is of n-th order 
according to the following normalized formula 

This gives the idea for the approximation: 

P(O t" 
O(t)  - K e  + P ( t )  -~ A ~ + t ~ a . ( t )  

We call ce,,(t) as n-th order adjustment function. 
Let the adjustment function in Eqns 2a, 2b be a~(t) as 
introduced above. Let 

1 
B~(t) = 1 + t ~ dt (3) 

For the solution of Eqns 2a, 2b, we obtain: 
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g~(t)-= f (A . ( t ) )  (4) 

where 

A. ( t )  = A" + s ~ ds = h - B .  

not necessary to solve the differential equation numerically. 
The simplest case is when the potential growth is the pure 
exponential growth. If this is combined with our adjustment 
function then the following model can be obtained: 

(5) y(t) = Yo + tXm.x A . ( t )  

Theoretically the integral function Bn(O can be expressed 
by elementary functions for a fixed positive integer, n, 
but the higher is n the more complicated is Bn(t). For 
bacteriological data representing a broad range of growth 
conditions for a variety of organisms, an adjustment function 
of order n = 4 proved to be satisfactory to characterize the 
transition from the lag to the exponential phase. In this case 
the expression for B4(O is: 

1 /1 t 2 + ' ~  t + l  
B4(t) = -  - I n - - -  + ~t )  

2~j-2 ~2 t 2 -- ~]-2t + 1  
) 

where 

•]2t 
arc tan 1 ~  (t < 1) 

~r/2 (t = 1) 

St 
arc tan 1 ~  ~ + ~r (t > 1) 

(6) 

~t)  = 

(7) 

RESULTS 

The new growth model has several advantageous features 
compared with the previous approaches. 

(1) If we know the explicit solution of the autonomous 
part which describes the potential growth, then we can also 
derive the explicit solution for the actual growth, so it is 
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Fig. 1. A salmonellae growth curve (code = 1 in [8]) fitted by the 
Gompertz-function ( . . . . .  ) and by the new model(- ). 

where y(t) = In x(t) and An(t) is given by Eqns 3 and 5. 
Therefore the model has the following parameters: 

Yo: logarithm of the initial cell concentration 
(= In Xo) 

/ ~ x :  maximum specific growth rate 
A: lag-parameter 
n: curvature-parameter 

This model describes only the lag and the exponential phase. 
This can be useful when there are no data in the stationary 
phase. To estimate the maximum growth rate and the lag, 
it is not necessary to accumulate data in the stationary 
phase. This is a considerable advantage over using a sigmoid 
function which is noticeably dependent on data points around 
the upper asymptote. 

Fitting curvature parameter, n, can cause computational 
difficulties. For the sake of simplicity its value can be fixed 
as n = 4 which has proved to be a good compromise between 
the goodness-of-fit and convenience. In this case A4(/) is 
given by Eqns 5, 6 and 7. The situation is similar to that of 
the Richards curve after the exponential phase [12]. There 
the value m = 1 is the most common choice for the curvature 
parameter which corresponds to the logistic curve. Here the 
curvature parameter n = 4 is suggested as a simple but well 
fitting choice. However, if the culture shows a sudden 
transition after the lag period then a higher (but fixed) 
curvature parameter may be needed. Even in this case it is 
not necessary to integrate the a,(t) adjustment function 
numerically in every step of the curve fitting procedure. For 
n > 1 the Bn(t) integral in Eqn 3 is bounded and it is 
sufficient to calculate some of its values only once and then 
use those values for interpolation. 

(2) Choosing the logistic growth as potential growth and 
the fourth order adjustment function (n = 4), the following 
explicit growth function can be derived: 

y(t) = Ymax -- In (1 + (eY~ax-Yo - 1)e-~maxa4 (0) 

with the notations of Eqns 5, 6 and 7. The parameters of 
this model are: 

Y0: 

/Xn;ax : 

h: 

Ymax: 

logarithm of the initial cell concentration 
(= In x0) 
maximum specific growth rate 
lag-parameter 
logarithm of the maximum population density 
(= In Xmax) .  

An example of this growth curve is shown in Fig. 1. (A 
more complicated version of the new model could be 
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Fig. 2. Response surfaces if the Gompertz-function was applied to determine the maximum specific growth rate ( . . . . .  ), or the new 
model was fitted to experimental growth curves ( ). The closed circles represent growth rates collected from the publications of 

different authors. 

obtained by choosing some other function of Turner et al. 
[12], as potential growth.) 

The above model can be compared with the earlier 
Gompertz approach. Both are four-parameter models. It 
has been shown that the goodness-of-fit and the standard 
errors of the estimates are generally better than the respective 
statistical characteristics of the Gompertz curve fitting [3]. 

(3) The new concept provides an explanation why it is 
more difficult to model the lag than the maximum specific 
growth rate. First, in the new model the duration of the lag 
depends, in part, on the previous growth environment. 
Secondly, the estimation of the lag is equivalent to the 
estimation of the time when the critical product reaches its 
Michaelis-Menten constant, Ke. As is well-known, the 
identification of Kp frequently leads to ill-conditioned 
problems [10] and this property is transferred to the 
adjustment function. 

(4) It can be proved mathematically [3] that our 3, 
parameter is very close to the time where the second 
derivative of the growth function is at maximum. A definition 
for lag period, as the time during which the second derivative 
of the growth curve reaches its maximum, was recently 
proposed [4]. Now we suggest a more mechanistic definition 
of the lag: the end of the lag period is the time when the 
critical product reaches its Michaelis-Menten constant, Ke. 

(5) Because the adjustment function is zero at the 

inoculation, it is impossible to obtain negative estimates for 
the lag when using the new model. 

(6) In the exponential phase the growth is represented 
essentially by a straight line (Fig. 1). This is why it estimates 
a lower maximum specific growth rate than the Gompertz 
function, which has a pronounced curvature around the 
inflexion. 

The consequence is that the response surface fitted to 
the Gompertz-type maximum specific growth rate, is gener- 
ally above the response surface fitted to the respective 
parameter of the new model. In Fig. 2, the dashed surface 
is the response surface when the Gompertz-approach was 
used to model the growth of Listeria monocytogenes and 
the surface defined by the continuous line was obtained 
using the new model. The closed circles represent growth 
rates collected from different literature data and they are 
independent of our experiments. It can be seen that the 
exaggerated predicted values for the growth rate were the 
result of using the Gompertz function. The new model 
generally predicts growth rates c. 10% lower, which bring 
the predictions very close to the growth rates estimated by 
other authors. 

In view of its computational and statistical advantages it 
is recommended that the new model be used in fitting 
growth curves from viable count data in preference to the 
Gompertz function. 
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